Gushers and Tricklers: Practical Use of the Glycemic Index

Johanna Burani, MS, RD, CDE

American Diabetes Association
Southern Regional Conference
Marco Island, Florida
May 26, 2006

Introduction

Let's discuss:

- Glycemic Index
- Glycemic Load
- Health Benefits
- What to Eat
- Case Study
- Hands-on Activities

Glycemic Index (GI)

What is the glycemic index?

A scale that ranks carbohydrates by how much they raise blood glucose levels compared to a reference food.

Glycemic Index (GI): Ranking

Low

0 - 55

Moderate

56 - 69

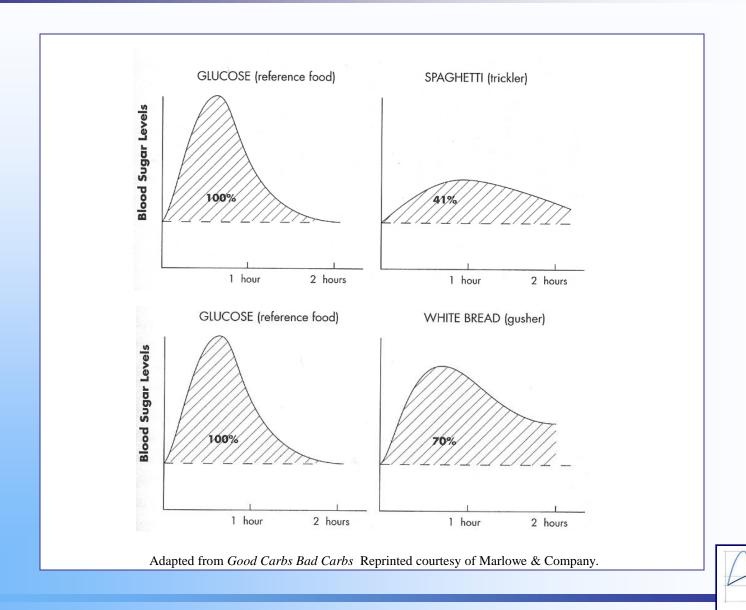
High

70 or more

Glycemic Index (GI): Protocol

- 1. 25 or 50 grams carbohydrate of test food.
- 2. Blood samples taken:

1st hour: every 15 minutes


2nd hour: every 30 minutes

3rd hour: every 30 minutes*

- 3. Values plotted; AUC calculated.
- 4. Test food response compared to reference food response.
- 5. Average GI of 8-10 volunteers = GI of test food.

Glycemic Index (GI): Sample Graphs

• Type of starch

Type of Starch

Amylose

- Absorbs *less* water
- Molecules form *tight clumps*
- Slower rate of digestion

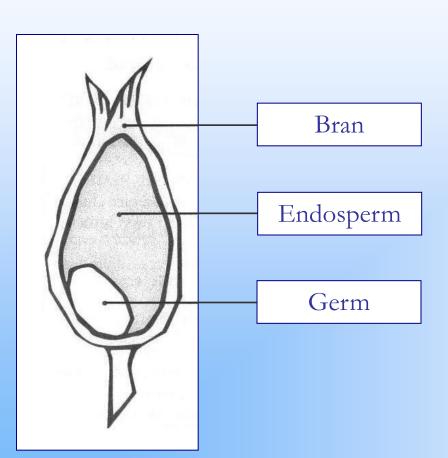
Lower GI

Kidney beans (28)
Uncle Ben's converted LG rice (50)

Amylopectin

- Absorbs *more* water
- Molecules are more open
- Faster rate of digestion

Higher GI


Russet potato (85) Glutinous rice (98)

- Type of starch
- Physical entrapment

Physical Entrapment

Bran acts as a physical barrier that slows down enzymatic activity on the internal starch layer.

Lower GI

All Bran (38)

Pumpernickel bread (50)

Higher GI

Bagel (72)

Corn Flakes (92)

- Type of starch
- Physical entrapment
- Viscosity of fiber


Viscosity of Fiber

Viscous, soluble fibers transform intestinal contents into gel-like matter that slows down enzymatic activity on starch.

Lower GI

Higher GI

Apple (40) Rolled oats (51) Whole wheat bread (73) Cheerios (74)

- Type of starch
- Physical entrapment
- Viscosity of fiber
- Sugar content

Sugar Content

Lower GI


Frosted Flakes (55)

Raisin Bran (61)

Higher GI

Golden Grahams (71)

Rice Krispies (82)

- Type of starch
- Physical entrapment
- Viscosity of fiber
- Sugar content
- Fat and protein content

Fat & Protein Content

Fat and protein slow down gastric emptying, and thus, slows down digestion of starch.

Lower GI

Peanut M&M's (33)

Potato chips (54)


Special K (69)

Higher GI

Jelly beans (78)

Baked potato (85)

Corn Flakes (92)

- Type of starch
- Physical entrapment
- Viscosity of fiber
- Sugar content
- Fat and protein content
- Acid content

Acid Content


Acid slows down gastric emptying, and thus, slows down the digestion of starch.

Lower GI

Higher GI

Sourdough wheat bread (54)

Wonder white bread (73)

- Type of starch
- Physical entrapment
- Viscosity of fiber
- Sugar content
- Fat and protein content
- Acid content
- Food processing

Food Processing


Highly processed foods require less digestive processing.

Lower GI

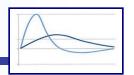
Higher GI

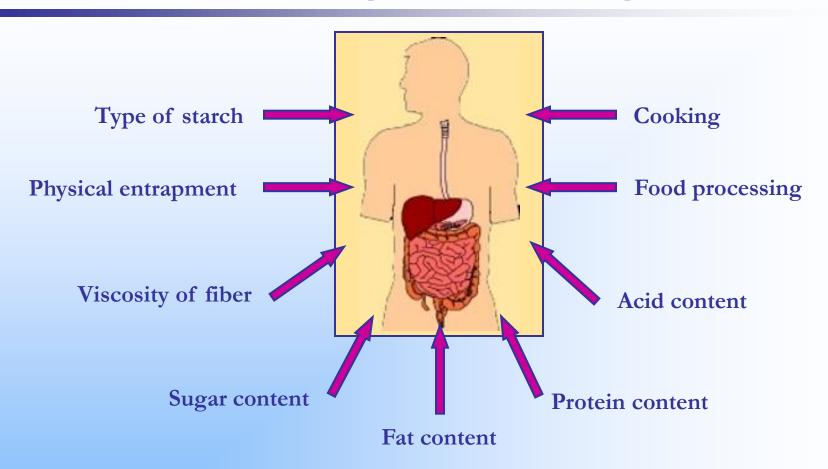
Old fashioned, rolled oats (51)

Quick, 1-minute oats (66)

- Type of starch
- Physical entrapment
- Viscosity of fiber
- Sugar content
- Fat and protein content
- Acid content
- Food processing
- Cooking

Cooking


Cooking swells starch molecules and softens foods, which speeds up the rate of digestion.


Lower GI

Al dente spaghetti – boiled 10 to 15 minutes (44)

Higher GI

Over-cooked spaghetti – boiled 20 minutes (64)

How does all this affect our glycemic levels?

How does all this make us feel after eating carbohydrate-containing foods?


Glycemic Load (GL): What does it mean?

Glycemic load measures the degree of glycemic response and insulin demand produced by a specific amount of a specific food.

Glycemic load reflects both the quality and the quantity of dietary carbohydrates.

 $GL = GI/100 \times CHO$ (grams) per serving

Example: GL of an apple = $40/100 \times 15g = 6g$

Glycemic Load (GL): Calculation

1/2 cup converted, LG rice

$$38/100 \times 22g = 8 g$$

1/2 cup glutinous rice

$$98/100 \times 29g = 28 g$$

2 1/4 Tbsp glutinous rice

$$98/100 \times 8g = 8 g$$

1 2/3 cups converted, LG rice

$$38/100 \times 73g = 28 g$$

Glycemic Load (GL): Ranking

Individual food portion:

Low 0-10

Moderate 11-19

High 20+

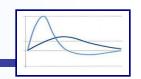
Whole day:

Low < 80

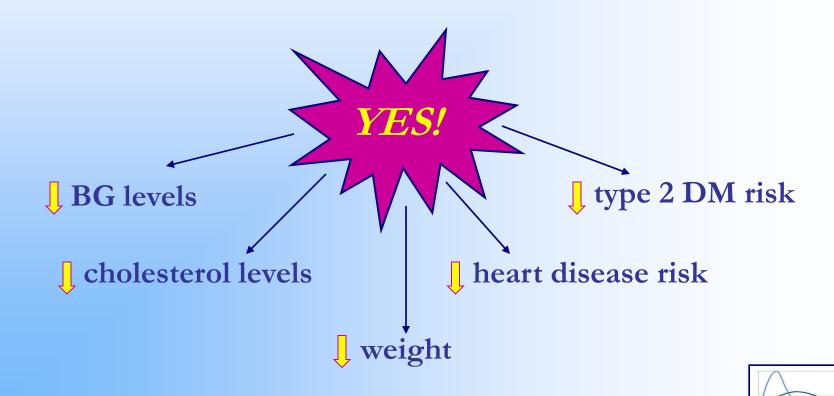
Moderate 100

High > 120

GI vs. GL

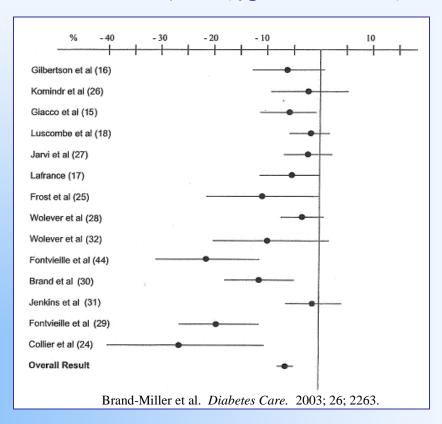

Glycemic Index: ranks carbohydrates based on their immediate blood glucose response.

GI = glycemic quality


Glycemic Load:

helps predict blood glucose response to specific amount of specific carbohydrate food.

$$GL = glycemic$$
 quality quantity



Are there any documented benefits to lowering the GI of one's diet?

Low GI diet helps lower blood glucose levels.

Meta-analysis of 14 studies, 356 subjects (types 1 & 2 DM), 2-52 weeks duration

Mean difference

- 7.4% in glycated proteins *over & above* reduction from high GI diet.
- 0.43% points in HbA1c over & above reduction from high GI diet

Low GI diet helps lower blood glucose levels.

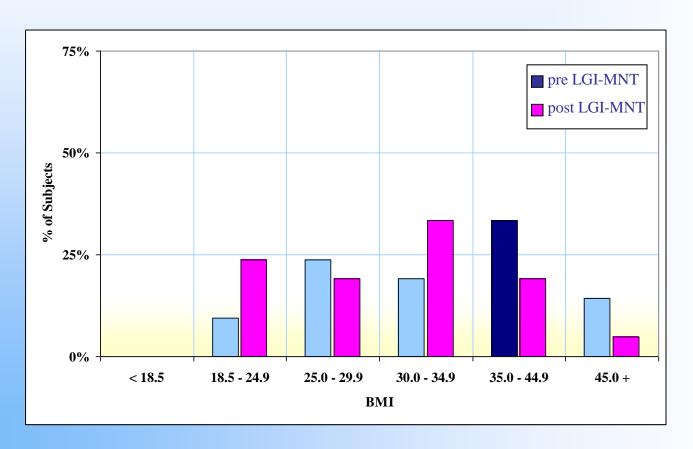
EURODIAB IDDM Complications Study, 1996 2,054 people, 15-60 y, with type 1 DM

	GI	HbA1c
Lowest quartile	58-78	6.04
Highest quartile	86-112	6.60

Low GI diet aids in weight control.

Nurses' Health Study, 1984-1996 74,091 women, 38-63 y

Calculated odds ratios (lowest > highest quintiles)


	BMI (≥30)	Major weight
	n = 6,400	gain
		$(\geq 25 \text{kg}) \text{ n} = 657$
Whole grains	-19%	-23%
Refined grains	+18%	+26%
Dietary fiber	-34%	-49%

Lin et al. Am J Clin Nutr. 2003; 78; 923.

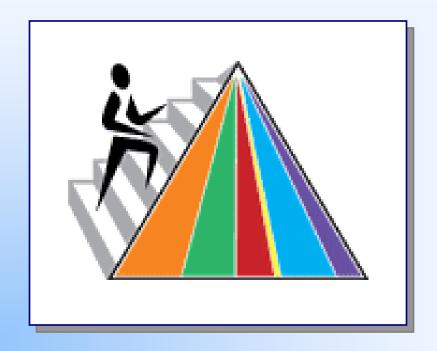
Low GI diet aids in weight control.

Post low GI MNT counseling, 21 subjects, 21-89 y, 3-36 mos.

Low GI diet decreases risk of diabetes.

Nurses' Health Study, 1986-1992 65,173 US women 40-65 y, free of DM 6 year follow-up: 915 cases of type 2 DM

	Relative risk
Î GI	1.37
Î GL	1.47
î cereal fiber	0.72
↑ GL ↓ cereal fiber	2.50


Low GI diet decreases risk of diabetes.

Health Professionals' Follow-up Study, 1986-1992 42,759 US men 40-75 y, free of DM 6 year follow-up: 523 cases of type 2 DM

	Relative risk
Î GI	1.37
î cereal fiber	0.70
↑ GL ↓ cereal fiber	2.17

What Should I Eat?

What Should I Eat?

2005 Dietary Guidelines

- Balance calories in with calories out.
- Eat balanced diet with variety of nutrient-dense foods and beverages.
- \circ Consume 2 cups fruit, $2\frac{1}{2}$ cups vegetables per day. (2,000 calories intake)
- o Choose whole grains for at least half of daily grain consumption.
- Consume 3 cups FF/LF milk or equivalent.
- Keep fat consumption 20-35% of daily calories. (mono & polyunsaturated)
- Consume less than 2300 mg sodium/day.
- o Choose foods with little added sugar or caloric sweeteners.
- Drink alcohol in moderation.
- Practice food safety handling and preparing rules.

Do not focus exclusively on achieving a low glycemic load diet with all low glycemic index food choices.

Result could be: high fat

low carbohydrate

low fiber

calorically dense

Instead...

A Better Idea

Aim for a well-balanced diet that includes low glycemic index carbohydrates. Use glycemic load as a guide for controlling portions.

Hint:

Low GI CHOs allow for larger portions, while regulating the GL.

High GI CHOs require smaller portions to regulate the GL.



GI = 60 GL = 48

GI = 42 GL = 31

GI = 85 GL = 48

GI = 39 GL = 22

GI = 83 GL = 19

GI = 14 GL = 1

GI = 80 GL = 32

GI = 61 GL = 12

GI = 57 GL = 31

GI = 32 GL = 16

How to increase consumption of low GI foods

Eat high-fiber breakfast cereals (oats, bran, barley)

OR

Add berries, nuts, flaxseed and cinnamon to high GI cereals.

How to increase consumption of low GI foods

Choose dense, *whole* grain and sourdough breads and crackers.

OR

Add a heart-healthy protein and/or condiment to high GI breads and crackers.



How to increase consumption of low GI foods

Include 5-9 servings of fruits and vegetables every day.

OR

No ifs, ands or buts – just do it!
(Mom was right.)

How to increase consumption of low GI foods

Replace white potatoes with yams or sweet potatoes.

OR

Try canned new potatoes, or just eat smaller portion of high GI potatoes.

How to increase consumption of low GI foods

Eat less refined sugars and convenience foods (soda, sweets, desserts, etc.)

OR

Combine nuts, fruit, yogurt, ice cream with commercial sweets – just watch portion sizes.

Case Study – "Amy"

Before

38 YO administrative assistant

Married, no children

Height: 5'7"

Weight: 320 lbs.

BMI: 50 (severe obesity)

Type 2 DM since age 35

A1c: 6.3 (Glucophage 500 mg)

BP: 148/90 (Altace 10 mg)

Case Study – Amy's Before Diet

Breakfast: toasted bagel with cream cheese, 16 oz. orange juice, large

coffee with whole milk

Lunch: 6" roast beef & cheese sub sandwich w/ mayo, 20 oz. diet

Pepsi

Snack: ("all afternoon long") 13 oz. bag Hershey miniature

chocolate bars

Dinner: ½ box macaroni & cheese (made w/ 2% milk), 3 beef hot

dogs on buns, water

Snack: 1 ½ cups ice cream

6250 Kcal: 43% CHO (666g), 11% PRO (173g), 46% fat (321g)

GI = 57 (moderate)

GL = 352 (very high)

Case Study – Amy's After Diet

Breakfast: 2 slices 100% WW toast, 1 Tbsp natural, NSA peanut butter,

1 Tbsp all-fruit jelly, 1 cup fresh strawberries, large coffee

w/ skim milk

Lunch: 4 oz. grilled chicken breast, large green salad with varied

fresh vegetables & 2 Tbsp vinaigrette dressing, small boiled

sweet potato, orange, diet iced tea

Snack: 6 oz. light yogurt, ½ cup cherries (frozen)

Dinner: 4 oz. grilled salmon w/ lemon juice, 1 cup pasta w/ 1 cup

broccoli rabe, 1 Tbsp olive oil, water

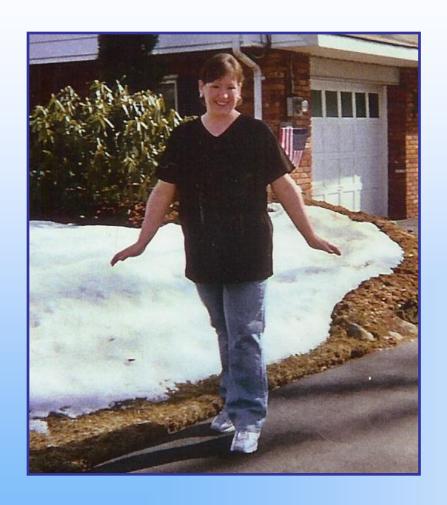
Snack: apple

2150 Kcal: 47% CHO (251g), 19% PRO (104g), 34% fat (82g)

GI = 39 (low)

GL = 61 (low)

Case Study – "Amy"



3 years later...

Before

Case Study – "Amy"

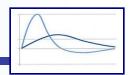
Weight: 205 lbs

BMI: 32 (mild obesity)

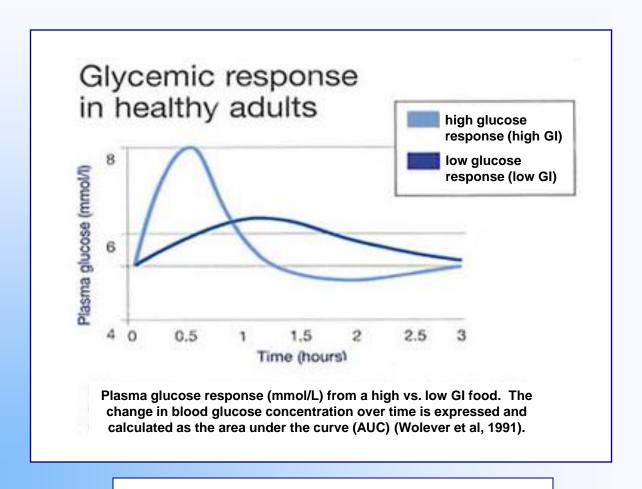
A1c: 5.2

BP: 120/60, RHR 47

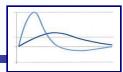
Medications: none.


Patient Empowerment Model

The patient makes self-directed, informed decisions about personal behavioral changes.



Practitioner's Empowerment Model


The practitioner makes self-directed, informed decisions about professional educational changes.

jburani@gmail.com



www.glycemicindex.com

Thank You!

